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ABSTRACT 

The Mechanical Engineering Department’s Biomechanics Research Group are in the process of 

developing an additive manufactured, lattice structure knee implant. A common drawback of 

standard modern knee implants is that their modulus, typically around 110 GPa, is far greater than 

the surrounding bone tissue which impedes effective bone regeneration. The modulus of the 

Biomechanics Group’s implant will be much lower, to match the surrounding bone and allow for 

better bone regeneration. 

The aim of this project was to optimise the topology of the tibial tray of this knee implant by 

adjusting the volume fraction throughout the lattice structure, such that its fatigue strength is 

more in line with the standard set by the ISO14879 test method. A compromise was to be reached 

in doing so between ensuring a sufficient strength for fatigue performance and maintaining a 

modulus that is sufficiently comparable with the surrounding bone to gain the benefit of effective 

bone regeneration. 

Conducting a non-penalising stiffness-maximising topology optimisation with constraints upon the 

average regional modulus-matching improved the structure’s yield performance when exposed to 

the ISO test-specified 900 N load compared to a fully modulus-matched structure. With a 14.3% 

average deviation from the ideal bone regeneration modulus targets, the predicted percentage of 

element failures in a mesh of the tibial tray was reduced by approximately 16.9%. Integrating a 

stress solver into the simulation allowed a looped process to be developed, whereby volume 

fractions were adjusted to prevent failure according to an initial stress distribution, before finding 

the updated stress distribution caused by this adjustment and repeating. Significant sensitivity to 

initial conditions and iteration number in this process offered a wide range of potential design 

solutions. With an initial condition of a fully modulus-matched structure, a single iteration of the 

looped process resulted in a design that reduced percentage predicted element failures by 

approximately 44.9%, with a 12% average deviation from the modulus targets. 

A non-penalising stress-constrained topology optimisation approach would have a powerful 

potential application to this problem. Developing such a simulation would be highly novel and 

complex. Groundwork was set for this approach by deriving an analytical solution for clustered 

stress sensitivity values, although further consideration would be needed for successful validation. 
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1. INTRODUCTION 

Knee implant design is an area of increased focus in engineering, with medical advances and 

trends in the age, gender and BMI of populations leading to increased reliance upon them. Knee 

implants are a relevant option for surgeons undertaking joint preservation or early intervention 

partial joint replacement surgeries, but the most significant use-case is the total knee arthroplasty 

[1]. Based upon 2010 total knee arthroplasty incident rates, with projected BMI and age trends 

accounted for, the estimated number of total knee arthroplasties in the UK increases by 25%, from 

94,783 in 2020 to 118,666 in 2035 [2]. Figure 1 indicates the effects of trends in BMI and age 

distribution on incident number trends. 

The total knee arthroplasty procedure is a common treatment in cases of injury or arthritis where 

non-surgical options have been exhausted. The procedure involves a resurfacing of the ends of the 

tibia and femur with metal implant components before a spacer is inserted between the two 

bones to create a smooth gliding surface for movement at the joint [3]. The tibia resurfacing 

component, shown in Figure 2, is known as the tibial tray and is the focus of this project. Although 

total knee arthroplasty is among the safest procedures in all of medicine, its increased frequency 

has led to a growing number of complications and revision procedures [4]. 

FIGURE 1 – TOTAL KNEE ARTHROPLASTY INCIDENT TRENDS [2] 
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FIGURE 2 – TIBIAL TRAY COMPONENT [5] 

The Biomechanics Research Group at Imperial College London are part of the Medical Engineering 

Group within the Applied Mechanics Divisions of the Mechanical Engineering Department. The 

group specialises in synthesising novel engineering solutions to orthopaedic problems, and 

utilising cutting-edge technology to develop orthopaedic devices. A recent area of work in the 

Biomechanics Group has been the development of additive manufactured knee implant 

components from a titanium alloy (Ti6Al4V) lattice structure material. The use of a lattice 

structure as opposed to solid titanium typically employed in the tibial tray is hoped to improve 

anisotropic properties and better match mechanical properties in the tibia, to maintain natural 

load transfer and thus improve bone remodelling, thereby reducing the likelihood of complication 

and the need for revision procedures. Specifically, this can be achieved by the matching of 

modulus values between the implant and bone. The work is being conducted by PhD student 

Maxwell Munford, who has acted as the co-supervisor of this project. 

Additive manufacture opens the window for structures to have controlled, favourable anisotropy 

by means of an optimised lattice architecture, such that strengths and moduli along axes are 

tailored to directional needs and adequate mechanical properties are provided in all directions. 

This demands an ability to predict the anisotropic properties of the lattice structure. A method of 

doing so has been developed by the Biomechanics Group, relating mechanical test data for 

material properties in principal component directions to structural density and fabric with a power 

law fitting [6]. For favourable bone remodelling characteristics, with matched bone and implant 

mechanical properties, a map of bone apparent modulus in the axial and transverse directions 

through the tibia is required. Such a mapping has been achieved by the Biomechanics Group, with 

Plateau 

Keel 
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a resulting understanding of material property locational dependence and a relationship 

established with bone density values as obtained from conventional clinal CT scans [7]. 

1.1. AIMS AND OBJECTIVES 

The research thus far has resulted in the development of a lattice structure tibial tray, with local 

volume fractions through the structure selected to match the surrounding bone. It has been 

shown that the load transfer to the tibia resulting from this design is very close to the original un-

implanted case, which improves bone remodelling behaviour by means of the bone’s natural 

homeostasis. The aim of this project was to adapt the design of the lattice structure knee 

implant to improve fatigue strength in accordance with the ISO certification, whilst maintaining 

the favourable bone remodelling properties. The certification defines the minimum endurance 

strength required of the tibial tray according to whether the ISO14879 load cycle testing is passed. 

The objectives to be met to achieve this aim are detailed. 

1. Conduct a literature review to understand the following: 

- Bone remodelling theory. 

- The requirements of the ISO14879 test method. 

- Fatigue behaviour of lattice structure, additive manufactured materials. 

- The concept of topology optimisation. 

2. Conduct a standard SIMP stiffness topology optimisation. 

3. Implement a non-binary stiffness topology optimisation approach. 

4. Implement a stress solver to assess the optimisations according to stress limits and develop 

hybrid stress-satisfying designs. 

5. Develop a non-binary stress topology optimisation. 

6. Define and compare the strength and remodelling potential of each considered design. 

7. Conduct ISO14879 or other lab testing on additive manufactured specimens to validate 

designs. 

Literature on non-binary topology optimisations was sparse and therefore a novel approach would 

have to be taken to developing these. The area of stress topology optimisation is also complex and 

under-researched, with stiffness topology optimisation methods being far more established. It was 

therefore understood that developing a non-binary stress topology optimisation method would be 
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especially challenging, and this was therefore identified as a secondary area of investigation in 

attempting to achieve the project aim. Developing a non-penalising stiffness topology optimisation 

and stress satisfying and hybrid stress satisfying approaches would take precedent. At the time of 

writing this report, designs have been additive manufactured, but testing has been left as a next 

step to this work due to time constraints. 

2. BACKGROUND AND LITERATURE REVIEW 

2.1. KNEE IMPLANTS FOR IMPROVED BONE REMODELLING 

The tibial tray of a knee implant is the component that re-surfaces the tibia in order to support 

and secure the articulating surface component, as shown in Figure 3. The tibial tray is subject to 

significant loads during activities of daily living, varying, as a percentage of body weight, from 

107% BW at two-legged standing to 346% BW during stair descending [8]. Though solid titanium 

alloy implant materials (Ti6Al4V) typically used at present can withstand these loads, they have 

modulus values in the region of 110 GPa, whilst the tibia has modulus value of 0.3-5 GPa. The 

mismatch in implant modulus compared with that of the surrounding bone is associated with a 

stress shielding effect [9]. As proposed by Wolff’s Law, repetitive loading of bone causes an 

adaptive response which enables the bone to better withstand the loads [10]. This confirms Frost’s 

mechanostat theory, which presents the concept of bone metabolic monitoring in relation to its 

mechanical usage to stimulate modelling and remodelling behaviour as needed [11]. It is also 

understood that below a certain strain or loading threshold, bone material is resorbed [12]. It has 

therefore been observed that when stress shielding prevents stresses from being translated from 

the implant to the tibia, inferior bone remodelling and bone weakening results, eventually 

resulting in aseptic loosening of the implant. This is a major source of complication for total knee 

arthroplasty [13]. 

 

FIGURE 3 – KNEE IMPLANT COMPONENTS [14] 
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To overcome this limitation, lattice structure titanium implants such as that being developed by 

the Biomechanics Group, have recently become a source of interest [15]. Lattice structures hold 

the potential advantage of efficient mass distribution and optimised material properties such as 

modulus, compressive weight-to-strength ratio, or natural frequency. They also allow mechanical 

anisotropy to be specially designed for the application [6]. Recent developments of additive 

manufacturing methods have allowed these advantages of lattices to be achieved through finer 

control of their structure. The most common additive manufacturing process is selective laser 

melting, which fabricates the structure by fusing fine metal powders. It is hoped that the regional 

modulus of the additive manufactured tibial tray can be matched to the tibial modulus as it varies 

through the bone location [7], by varying the porosity appropriately through the structure. This 

has the potential to better-translate loading from the implant to the surrounding bone. By 

preventing stress shielding and encouraging tissue ingrowth, the implant may be stabilised, thus 

reducing the possibility of complication, improving its longevity [15]. The pore interconnection 

offered by a lattice structure would also be advantageous for cell migration and in vivo blood 

vessel formation. However, the material properties will be worsened with porosity. It is therefore 

important to determine whether a compromise can be reached between the improvement in 

bone regeneration offered by the lattice implant and the achievement of minimum strength 

requirements, defined by the ISO 14879 test.  

2.2. ISO TEST 

The ISO 14879 test is a tibial tray endurance test method. Placing 

the test specimen in a rig with one end fixed, the other extends as 

a cantilever with a cyclic force applied to it through a spacer as 

shown in Figure 4. The test method establishes an endurance 

requirement of 5 specimens passing 10 million cycles of a 900 N 

load. The position of the loading point is to correspond with the 

centre of pressure when the femoral component, articulating 

surface and tibial tray are assembled at 0 flexion, and the frequency of loading is to be no greater 

than 10 Hz [16]. For a left-hand side tibial tray, this loading location is near the centre of the right-

side plateau region, and vice versa for a right-hand side component.  

FIGURE 4 – ISO 14879 SCHEMATIC  

[16] 
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2.3. FATIGUE BEHAVIOUR OF ADDITIVE MANUFACTURED LATTICE STRUCTURES 

Lattice structures or cellular solids are solids made up of a network of edges or faces constructing 

distinct cells. Within open cell cellular material – the lattice structure type employed in this project 

– edges or struts which meet at vertices are the main constructing element as shown in Figure 5. 

 

FIGURE 5 - OPEN CELL CELLULAR MATERIAL [17] 

The struts are susceptible to three potential failure mechanism – yielding, buckling or fracture – 

with failure occurring by means of that with the lowest stress threshold [18]. The lattice structures 

can be further categorised as either stretch dominated, whereby the struts experience axial stress, 

or bending dominated, where the macro stress induces bending moments in the struts. The stress-

strain behaviour for the two modes is distinct, as shown in Figure 6, resulting in different failure 

mechanisms. The bending dominated mode, which is less stiff than the stretch dominated, may 

result in crack initiation at the outer fibres of struts where the tension stresses are greatest, which 

leads to crack propagation and eventual strut fracture [19]. The Maxwell number, as described in 

Equation 1, is a possible way of classifying the dominated mode, where 𝑠 is the number of 

interacting struts and 𝑛 is the number of nodes. 𝑀 < 0 suggests a bending dominant structure 

whereas 𝑀 ≥ 0 suggests stretch dominant, however this definition is limited since it does not 

account for the effect of loading direction on cell rigidity [20].  

𝑀 = 𝑠 − 3𝑛 + 6 (1) 
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FIGURE 6 - BENDING DOMINATED AND STRETCH DOMINATED STRESS-STRAIN BEHAVIOUR [18] 

The relationship between fatigue strength and number of load cycles in a lattice material may be 

defined according to the typical S-N power law as expressed in Equation 2, where 𝑆∗ is the fatigue 

strength and 𝑁𝑓
∗ is the number of cycles. The coefficient 𝐴∗ and the exponent 𝑏∗ are effected by 

the lattice relative density, the fatigue strength of the bulk material, the cell geometry and the 

solid distribution [19].  

𝑆∗ = 𝐴∗𝑁𝑓
∗𝑏

∗

(2) 

The fatigue failure of the structure can be modelled as the continuous failure of struts, with the 

structural stiffness decreasing with each strut failure. The S-N law for individual struts is defined by 

Equation 3. 

𝑆𝑁𝑓 = 𝐴𝑠𝑁𝑓
𝑏𝑠 (3) 

The dependence between the coefficients and exponents of each S-N law can be described by 

Equations 4 and 5, where 𝐶𝐴 and 𝑛𝐴 are a function of cell topology and struts’ shape and 𝐶𝑏 

depends on strut irregularities only. The relative density, 
𝜌∗

𝜌𝑠
, or volume fraction, represents the 

volume of the lattice cell solid material as a fraction of the volume enclosed by the lattice cell 

boundary. 

𝐴∗ = 𝐶𝐴𝐴𝑠 (
𝜌∗

𝜌𝑠
)
𝑛𝐴

(4) 

𝑏∗ = 𝐶𝑏𝑏𝑠 (5) 

The macrostructure S-N relation in Equation 2 can therefore be re-written as Equation 6 [19]. 
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𝑆∗ = 𝐶𝐴𝐴𝑠 (
𝜌∗

𝜌𝑠
)
𝑛𝐴

𝑁𝑓
∗𝐶𝑏𝑏𝑠 (6) 

In an additive manufactured lattice structure, there are numerous additional parameters that 

could affect fatigue properties of struts. These include the energy input of ray, scanning speed, 

scanning strategy, the size of particles in powder, the temperature of building chamber and the 

layer thickness. The layer-by-layer process may also result in new layers causing a heat treatment 

of previous layers, which could alter the microstructure of struts [19]. 

2.4. TOPOLOGY OPTIMISATION 

Topology optimisation is a developing field of mathematical design simulation for load bearing 

engineering structures, whereby optimal structural geometries are defined within a design space 

that satisfy mechanical constraints and boundary conditions whilst minimising a cost function. The 

method is typically valued for its ability to minimise the weight or compliance of a structure whilst 

satisfying structural constraints [21]. The density-based topology optimisation approach generally 

employs the finite method to assign a mesh to the structure and a unique design variable, 𝑥𝑘, for 

each element of the mesh. The design variable is a pseudo-density parameter that varies between 

0 and 1, 0 representing a void and 1 representing solid material at the location of the element [22]. 

The optimisation results in a material distribution that satisfies performance requirements and 

constraints given the particular boundary and load conditions. An example of topology 

optimisation on a component is shown in Figure 7. 

 

FIGURE 7 - TOPOLOGY OPTIMISATION EXAMPLE 

2.4.1. STIFFNESS-MAXIMISING TOPOLOGY OPTIMISATION 

The most common use of topology optimisation is in the binary compliance problem. This seeks a 

solution comprising only of voids or solid material, where stiffness is maximised with weight 

constraints. Maximising stiffness is equivalent to minimising the work done by the forces applied 
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to the structure (the compliance). The stiffness is defined by the following fundamental 

equilibrium equation, where 𝐾 is the stiffness matrix and 𝐹 and 𝑈(𝑥) are the force and 

displacement vectors respectively. 

𝐾(𝜌(𝑥))𝑈(𝜌(𝑥)) = 𝐹 (7) 

The solid isotropic material penalisation (SIMP) approach is often used in this problem. This 

approach parameterises the material properties based on the design variables, fitting a power law 

relation that penalises intermediate density values. As a result, the optimisation process ‘pushes’ 

all element design variables to 0 or 1. This can be expressed by either one of the following two 

schemes (Equations 8a and 8b or Equations 9a and 9b) where 𝐾 is the stiffness matrix and 𝐸 is the 

Young’s Modulus [23] [22] [24]. Subscript 𝑒 refers to element level parameters and 𝑞 and 𝑝 are the 

penalisation factors in the respective schemes, typically set to a value of 3. 𝐾𝑒
0 represents the 

element stiffness matrix per unit modulus. 

𝜂𝐾(𝜌𝑒) = 𝜌𝑒
𝑞 (8𝑎) 

𝐾(𝜌) =  ∑𝜂𝐾(𝜌𝑒)𝐾𝑒

𝑛𝑒

𝑒=1

(8𝑏) 

𝐸𝑒(𝜌𝑒) = 𝐸𝑚𝑖𝑛 + 𝜌𝑒
𝑝(𝐸0 − 𝐸𝑚𝑖𝑛) (9𝑎) 

𝐾(𝜌) =  ∑𝐸𝑒 ∙ 𝐾𝑒
0

𝑛

𝑒=1

(9𝑏) 

The 𝜌 variable is the ‘filtered’ design variable. Filtering is a method of weighting design variables 

by the value of their neighbours as described in Equations 10 and 11 – this reduces mesh size 

dependancy and removes ‘checkerboard patterns’ in the resulting optimised structure [25]. 

𝜌𝑒 =∑𝑊𝑒𝑗𝑥𝑗

𝑛𝑒

𝑗=1

= 
∑ 𝑤𝑘𝑥𝑘𝑘∈Ωe

∑ 𝑤𝑘𝑘∈Ωe

(10) 

𝑤𝑘 = 
𝑟0 − 𝑟𝑘
𝑟0

(11) 

The filtering occurs over a radius 𝑟0, where Ωe includes all the elements within the radius and 𝑤𝑘 is 

the weight factor for each element within the radius, found from the relative distance of the 

element to the edge of the filtering radius as demonstrated in Figure 8. 
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FIGURE 8 – REPRESENTATION OF RADIUS VALUES USED IN WEIGHT FACTORS 

The common compliance minimisation with mass constraint topology optimisation problem 

formulation can be defined as in Equation 12, where the displacement vector is found from 

Equation 7 [22]. �̅� is the maximum total mass constraint. For a mesh with equally sized elements, 

the mass constraint can equally be described by an average pseudo-density constraint as in 

Equation 13.  

ℙ =

{
 
 

 
 

𝑚𝑖𝑛 𝐹𝑇𝑈(𝑥)

𝑠. 𝑡. {
∑𝑚𝑒𝜌𝑒(𝑥) ≤ �̅�

𝑛𝑒

𝑒=1

0 < 𝑥𝑒 ≤ 1

(12) 

∑ 𝜌𝑒(𝑥)
𝑛𝑒
𝑒=1

𝑛𝑒
≤ �̅�𝑎𝑣𝑔 (13) 

2.4.2. STRESS-CONSTRAINED TOPOLOGY OPTIMISATION 

Recently, there has been an increased interest in topology optimisation methods that fulfil stress 

constraints. Since stiffness maximising topology optimisations do not account for stresses, they 

may lead to stress concentrations and therefore demand significant adjustment of the resulting 

topology to achieve a conceptual design. By integrating a stress constraint into the topology 

optimisation, the resulting topology may be closer to final designs. The objective function in this 

case may be to minimise mass, or to minimise compliance with a secondary constraint on mass, 

shown by Equation 14 and 15 respectively, where 𝜎𝑖
𝑃𝑁 is the P-norm stress measure for cluster 𝑖 

and 𝜎 is the stress limit [22]. 

ℙ1 =

{
 
 

 
 
𝑚𝑖𝑛∑𝑚𝑒𝜌𝑒(𝑥)

𝑛𝑒

𝑒=1

𝑠. 𝑡. {
𝜎𝑖
𝑃𝑁(𝑥) ≤ 𝜎
0 < 𝑥𝑒 ≤ 1

(14) 

𝑟𝑘 

𝑟0 
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ℙ2 =

{
 
 

 
 

min𝐹𝑇𝑢(𝑥)

𝑠. 𝑡.

{
 
 

 
 

𝜎𝑖
𝑃𝑁(𝑥) ≤ 𝜎

∑𝑚𝑒𝜌𝑒(𝑥) ≤ �̅�

𝑛𝑒

𝑒=1

0 < 𝑥𝑒 ≤ 1

 
(15) 

The P-norm stress measure (Equation 16) is a way of approximating the maximum von mises stress 

in a defined group of elements Ωi whilst maintaining differentiability of the stress parameter – a 

necessary characteristic for sensitivity method optimisation algorithms. This ‘clustered’ approach 

seeks to allow for local stress control without the computational expense of evaluating the stress 

constraint at every element in the structure.  

Von mises stresses for each element are found from element principal stresses as in Equation 17. 

Implicit within most stress vector formulations found in literature is a SIMP approach that applies 

a penalisation function to the solid material stress vector (Equation 18). As shown in Equation 19, 

the penalisation function is of an identical form to Equation 8a, but with a typical penalisation 

factor value of ½ [22]. The SIMP application has the same effect as in the stiffness maximising case 

of preventing intermediate design variables. From finite element theory, the solid material stress 

vector in three dimensions is as described in Equation 20.  [𝐶𝑠] is the solid material constitutive 

relationship matrix and [𝐵] is the dimension matrix, which relates nodal displacements to strains. 

𝜎𝑖
𝑃𝑁 = (

1

𝑁𝑖
∑(𝜎𝑒

𝑉𝑀)𝑝)

𝑎𝜖𝛺𝑖

1
𝑝

(16) 

𝜎𝑒
𝑉𝑀 = (𝜎𝑒𝑥

2 + 𝜎𝑒𝑦
2 + 𝜎𝑎𝑧

2 − 𝜎𝑒𝑥𝜎𝑒𝑦 − 𝜎𝑒𝑦𝜎𝑒𝑧 − 𝜎𝑒𝑧𝜎𝑒𝑥 + 3𝜎𝑒𝑥𝑦
2 + 3𝜎e𝑦𝑧

2 + 3𝜎𝑒𝑥𝑧
2 )

1
2 (17) 

𝜎𝑒 = 𝜂𝑆(𝜌𝑒)𝜎𝑒
𝑠 (18) 

𝜂𝑆(𝜌𝑒) = 𝜌𝑒
𝑝 (19) 

𝜎𝑒
𝑠 = [𝐶𝑠][𝐵][𝑢] =

[
 
 
 
 
 
𝜎𝑒𝑥
𝜎𝑒𝑦
𝜎𝑒𝑧
𝜎𝑒𝑥𝑦
𝜎𝑒𝑥𝑧
𝜎𝑒𝑦𝑧]

 
 
 
 
 

(20) 
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2.4.3. OPTIMISATION METHODS 

There are several optimisation algorithms that may be used in a topology optimisation, with 

scripts employing methods including sequential quadratic programming, the method of moving 

asymptotes and the optimality criteria method [26] [22]. These methods generally make use of the 

adjoint method, which is a way to compute the gradients of the objective function at cost which 

does not depend upon the number of design variables [27]. Major disadvantages of the sequential 

quadratic programming method include a lack of robustness and infeasibility caused by the 

linearisation of the constraint. The optimality criteria method, adopted in the topology 

optimisation of this project, is a specific case of the method of moving asymptotes, valued for its 

numerical simplicity and efficiency [26]. 

3. METHODOLOGY 

3.1. PROBLEM DEFINITION 

3.1.1. TOPOLOGY OPTIMISATION APPLICATION METHOD 

Following the literature review, the potential benefit of applying topology optimisation to the 

implant design was confirmed, despite some imposed necessity to deviate from standard methods 

established in literature. 

The application of density-based topology optimisation is attractive in the context of a lattice 

structure optimisation problem due to the optimisation’s use of the pseudo-density filtered design 

variables, 𝜌, which are assigned to each element and vary between 0 and 1. These parameters are 

‘nudged’ toward 0 or 1 in conventional binary topology optimisations, where the use of solid 

material only makes intermediate values redundant, by means of a penalisation function. 

However, in the case of lattice materials, the filtered design variable is intuitively analogous to 

local lattice relative density or volume fractions.  The topology optimisation application to this 

structure therefore presents a unique case where intermediate design variable values are both 

physical and desired. This demanded a deviation from the standard SIMP approach. 

The use of topology optimisation demands a mechanical property cost function to minimise and a 

mechanical property constraint. Ideally, the compromise upon bone remodelling capability of the 

tibial tray would be minimised, by minimising a cost function describing the deviation of local 

modulus values from that of the surrounding bone, and stress constraints would be imposed on 

the structure’s maximum von mises stress. This constraint value should strictly be defined 
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according to the fatigue behaviour of the material. An S-N curve for the material, which may be 

expressed as in Equation 6, would be the most appropriate way to define this limit, finding the 

stress threshold below which the 10 million cycles can be survived as demanded by the ISO test. 

However, this would require significant material testing to establish the coefficients of this 

equation, accounting for their various dependencies outlined in Section 2.3. Since this process 

would have been time consuming and the lattice’s fatigue behaviour was not the focus of the 

project, the yield stress was considered as the stress constraint as a first approximation. 

Since topology optimisations employing stress constraints are still novel and complex, even more 

so those implementing non-penalising methods, this ideal topology optimisation case was shelved, 

with the primary focus instead being dedicated to implementing a non-penalising approach to the 

standard compliance-minimising, mass-constrained topology optimisation outlined in Section 

2.4.1. Data obtained from the Biomechanics Group showed that the modulus values through the 

structure could be linearly related to the local volume fractions within the volume fraction range 

shown in Figure 9. Tibial modulus measurements by the Group suggested the left-side tibial tray 

modulus values shown in Figure 10 for effective modulus matching and bone remodelling. These 

values would be laterally inverted for a right-side tibial tray. 

These target values and the linear relation could be used to find target volume fraction values as 

summarised in Table 1. 
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TABLE 1 - TARGET REGIONAL VOLUME FRACTIONS 

Region Modulus Target (GPa) Volume Fraction 
Target 

Left 1 0.56 0.080 

Left 2 0.34 0.072 

Left 3 0.29 0.070 

Right 1 0.61 0.082 

Right 2 0.57 0.081 

Right 3 0.53 0.079 

The mass constraint formulation of the compliance minimising topology optimisation described by 

Equation 13 could therefore be used to impose a constraint on average deviation from effective 

remodelling performance. The regional differences in modulus targets would necessitate separate 

constraints being imposed in each region. The compliance minimising objective function was not 

obviously related to the failure behaviour of the structure, though was suspected to have some 

benefits. In order to evaluate failures and determine expected ISO test performance, it would be 

necessary to obtain a global tensor describing the von mises stress distribution through the 

structure by finite element analysis. This could also be used to adapt the design resulting from the 

stiffness-based topology optimisation, adjusting the local volume fractions according to which 

elements are at greatest risk of failure. These will be termed hybrid designs. The methodology 

process was therefore as described in Figure 11. 

 

FIGURE 11 - PROJECT METHODOLOGY PROCESS 
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3.1.2. BOUNDARY AND LOADING CONDITIONS 

Setting up the simulation environment was the first step in the project and required the mesh and 

the boundary and loading conditions to be specified. Since the topology optimisation would have 

to deviate from standard methods with ad hoc adjustments being made according to the stress 

distribution, significant customisability was required. MATLAB was therefore used as the 

simulation environment rather than pursuing topology optimisation solvers built into CAD 

packages such as Fusion or Solidworks. The top3d MATLAB script was used as the starting point for 

this analysis – a basic and compact SIMP-method binary compliance minimising topology 

optimisation for a cantilevered beam [26]. A mesh consisting of cubic elements only with 

adjustable resolution was chosen to minimise the complexity of meshing in MATLAB. The 

boundary and loading conditions were to be defined in accordance with an ISO test upon a left-

side tibial tray as in Figure 10, with a smaller region of tri-directional fixing within the simply 

supported fixing region to prevent rigid body modes in the solution. Since pure yielding was being 

considered as opposed to fatigue failure, a static 900 N loading condition was used. 

3.2. SETTING UP THE SIMULATION ENVIRONMENT 

The input variable for the top3d script was the elemental dimensions of the cantilever beam. The 

initial step was therefore to alter the script such that an STL of the tibial tray structure could be 

input, returning a mesh of the structure for the topology optimisation to be run on. It was also 

deemed convenient to be able to define the loading and fixing regions with STL blocks, such that 

the boundary conditions could be adjusted rapidly and without having to edit the script. These 

blocks were created within the tibial tray’s Rhino CAD model such that their axis positions as well 

as their sizes could accurately represent the boundary conditions. 

900 N 

Tri-directionally 

fixed nodes Simply supported 

region 

FIGURE 12 - LOADING AND FIXING CONDITIONS 
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3.2.1. STL INCORPORATION 

A ‘READ_STL’ MATLAB function was incorporated into the script, which returned the maximum 

and minimum dimension in each axis direction for each of the STL inputs. This was then used to 

find the number of elements in each direction according to a resolution input parameter (number 

of elements per mm in each direction). The implant STL’s elemental dimensions were then used in 

the ‘VOXELISE’ MATLAB function to create an ‘implantRegion’ matrix. This matrix represented a 

meshing of the of the implant’s bounding box with the appropriate element numbers in the 

respective coordinate axis, defining entries as one where solid material exists for that element and 

zero otherwise. This is illustrated by Figure 13. 

 

FIGURE 13 - VISUALISATION OF 'IMPLANTREGION' MATRIX 

For the STLs defining the fixing and loading regions, the maximum and minimum coordinate 

dimensions were used to define offset parameters for each direction, representing the leading 

FIGURE 14 - NODE AND DEGREE OF FREEDOM LABELLING SCHEME 
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edge of that STL within the implant’s element coordinates. The values were also used to find the 

fixing and loading STL elemental dimensions. A looping scheme was then used to define the 

loaded and fixed nodes, which made use of the ‘implantRegion’ matrix, fixing and loading offset 

parameters and the number of elements in each direction for both STLs. This counted through the 

elements in the ‘implantRegion’ matrix coinciding with the regions of the fixing and loading STLs 

and, if the matrix entry was equal to one (representing the presence of tibial tray material), the 

nodes of that element were added to an array. This array was then used to define the nodal 

degrees of freedom that would be fixed or loaded. The ‘implantRegion’ matrix was also used in the 

optimisation section of the script, for zeroing those entries of the volume fraction matrix ‘xPhys’, 

the compliance sensitivity matrix ‘dc’ and the modulus matrix ‘E’ corresponding to elements 

contained within the bounding box of the implant but outside of the implant material. 

In defining the loaded and fixed degrees of freedom of the structure, and in assembling the global 

stiffness matrix, the node labelling scheme defined in top3d was adopted. This can be described by 

Figure 14 – finding the coordinates of an element’s corner node closest to the global origin, 𝑁1, 

allows all other element node IDs and degree of freedom IDs to be found. 

Once the STL incorporating edits had been made, STLs defining the default beam dimensions and 

fixing and loading boundary conditions of the original top3d script were input to validate the 

adjusted script. The binary compliance method topology optimisation result was reproduced 

successfully as seen in Figure 15. The rotated orientation following the adjustments was a result of 

the top3d script and the READ_STL function defining the y and z directions inversely.  

Running the script on the implant STL with the respective loading and fixing region STLs at this 

stage gave the result shown in Figure 16.  

FIGURE 15 – LEFT: RESULT FROM RUNNING DEFAULT ‘TOP3D’; RIGHT: RESULT FROM RUNNING MODIFIED 

SCRIPT WITH APPROPRIATE STL INPUTS 
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c 

3.3. DEVELOPING A NON-PENALISING STIFFNESS TOPOLOGY OPTIMISATION 

3.3.1. REGIONALISATION 

The modulus targets for effective bone regeneration were regional dependant, as described in 

Figure 10. To define these regions in the ‘implantRegion’ matrix, STLs of each region’s bounding 

box were made and ‘READ_stl’ was used again to define the regions’ maximum and minimum 

element locations within the implant in a similar fashion to the definition of the fixing and loading 

element offset parameters. At the optimisation stage, these parameters were used to ‘split’ the 

volume fraction and compliance sensitivity matrices, capturing the region of interest only. The 

optimisation loop was then run for each one of these regions in turn using the relevant volume 

fraction constraint before ‘stitching’ the regional ‘xPhys’ matrices back together into a global 

‘xPhys’ once again. The optimality criteria adjoint optimisation algorithm adopted from top3d is 

demonstrated by the algorithm flowchart in Figure 17. The optimisation makes use of the 

Lagrange function formulation of the compliance minimisation problem with average volume 

fraction constraints show in Equation 21. In particular, this is reformulated as in Equation 22, 

defining a variable 𝐵𝑒 which should equal one if the optimisation is satisfied. This parameter is 

used to ‘nudge’ the design variables in the appropriate direction, using a ‘move’ parameter 

defining the maximum change per iteration of the optimisation loop. A bi-sector method is then 

used to adjust the Lagrange multiplier within a domain range according to the volume fraction 

constraint. Since the compliance sensitivity matrix is found before running the optimisation loop 

based upon the design variable matrix result from the previous iteration, the approach of running 

separate optimisations on each region in turn was deemed acceptable. 

ℙ =

{
 
 

 
 𝑚𝑖𝑛 𝑐(𝜌) = 𝐹𝑇𝑢(𝑥)

𝑠. 𝑡. {

∑ 𝜌𝑒(𝑥)
𝑛𝑒
𝑒=1

𝑛𝑒
≤ �̅�𝑎𝑣𝑔

0 < 𝑥𝑒 ≤ 1

→
𝜕𝑐(𝜌)

𝜕𝑥𝑒
+ 𝜆

𝜕𝜌𝑡𝑜𝑡
𝜕𝑥𝑒

= 0 (21) 

FIGURE 16– TOPOLOGY OPTIMISATION RESULT AFTER STL IMPLEMENTATION 
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𝐵𝑒 = −
𝜕𝑐(𝜌)

𝜕𝑥𝑒
(𝜆
𝜕𝜌𝑡𝑜𝑡
𝜕𝑥𝑒

)
−1

= 1 (22) 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 17 – OPTIMALITY CRITERIA METHOD ALGORITHM FLOWCHART 

Start primary loop subject to: 

Maximum change in element volume fraction 

compared to previous iteration < ‘tolx’. 

Iteration number < ‘maxloop’. 

Find global stiffness matrix ‘K’ and displacement 

vector ‘U’. 

Find compliance and volume fraction derivatives 

for Lagrange function ‘dc’ and ‘dv’. 

Start embedded loop subject to: 

Lagrange multiplier tolerance < ±0.0001 

 

Find 𝑥𝑒𝐵𝑒
𝜂  for each element (where 𝜂 is a 

damping coefficient = 0.5) and update 𝑥𝑒 

according to: 

 

0                  1 

𝑖𝑓 𝑥𝑒𝐵𝑒
𝜂 {

< xe −move, xe
𝑛𝑒𝑤 = xe −move

> xe +move, xe
𝑛𝑒𝑤 = xe +move

> xe −move and < xe +move,   

xe
𝑛𝑒𝑤 =  𝑥𝑒𝐵𝑒

𝜂

 

xe-move     xe+move     

xe  

Apply bi-sector method to adjust 𝜆 based on 

volume fraction constraint. 

If 𝜌𝑎𝑣𝑔 ≤ 𝜌𝑎𝑣𝑔, reduce upper bound on 𝜆 to 

average of domain to increase 𝐵𝑒. 

If 𝜌𝑎𝑣𝑔 ≥ 𝜌𝑎𝑣𝑔, increase lower bound on 𝜆 to 

average of domain to decrease 𝐵𝑒. 

Check tolerance on 𝜆 domain. 

Check maximum change in element volume 

fraction from previous iteration. 
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3.3.2. NON-PENALISING STIFFNESS MATRIX 

The assembly of the structure’s global stiffness matrix used the method described by Equation 9b 

in Section 2.4.1, reproduced below. 

𝐾(𝜌) =  ∑𝐸𝑒 ∙ 𝐾𝑒
0

𝑛

𝑒=1

 

The unit modulus element stiffness matrix 𝐾𝑒
0 was assembled using the finite element method 

(Equation 23), taking a volume integral of the matrix multiple of 𝐵𝑇, 𝐶0 and 𝐵 using the Gauss 

integration method. This was a [24 x 24] matrix since each element had 8 nodes each with 3 

degrees of freedom. The matrix was also identical for all elements since the element shape and 

sizes were identical, and the element modulus was the only parameter with functional 

dependence upon the element volume fraction. [𝐶0] is the standard constitutive matrix per unit 

modulus for a hexahedron element described by Equation 25, where 𝜈 is the material’s Poisson’s 

ratio, and [𝐵] is the dimension matrix relating the element’s nodal displacement vector to the 

nodal strains by taking the required derivatives of the shape functions, 𝑁1  − 𝑁8 as in Equation 24. 

These shape functions define the relationship between nodal displacements and the 

displacements through the element, illustrated by Figure 18. At the coordinates of each node, the 

shape function of that node becomes equal to 1 and all others are equal to 0. 

[𝐾0] = ∫𝐵𝑇𝐶0𝐵 𝑑𝑉𝑜𝑙 (23) 

[𝐵] =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧

    

𝜕

𝜕𝑦
0

𝜕

𝜕𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑧
0

0
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 
𝑇

[
𝑁1 0 0
0 𝑁1 0
0 0 𝑁1

    
𝑁2 0 0
0 𝑁2 0
0 0 𝑁2

    
… 𝑁8 0
… 0 𝑁8
… 0 0

    
0
0
𝑁8

] (24) 

[𝐶0] =
1

(1 + 𝜈)(1 − 2𝜈)
×

[
 
 
 
 
 
 1 − 𝜈
𝜈
𝜈
0
0
0

𝜈
1 − 𝜈
𝜈
0
0
0

𝜈
𝜈

1 − 𝜈
0
0
0

0
0
0

1 − 2𝜈

2
0
0

0
0
0
0

1 − 2𝜈

2
0

0
0
0
0
0

1 − 2𝜈

2 ]
 
 
 
 
 
 

(25) 
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The global stiffness matrix was then assembled by multiplying the element stiffness matrix by each 

element’s modulus value in turn, before positioning the entries in the global matrix according to 

the 24 degree of freedom IDs of that element. By replacing the SIMP modulus – volume fraction 

relationship with the empirical relationship established in Figure 9 and zeroing all values for 

elements not in the implant region, the non-penalising method was established. 

 A scaling described by Equation 26 and Table 2 was applied to the volume fraction constraints at 

the start of the script. There were several reasons for this. Firstly, as seen in Figure 9, a minimum 

bound on the allowable volume fraction was needed to limit the extrapolation of the linear trend 

and to prevent non-physical tiny or negative values. Since the lowest average volume fraction 

target was 0.070, the scaling set the minimum volume fraction to 0.060 to allow a sufficient 

domain in which element volume fractions in this region could fall below the target average during 

the optimisation without the extrapolation errors mentioned. An upper bound of 0.1 was selected 

to set a range of allowable volume fractions that would not result in individual elements deviating 

too far from their regional target. If all elements varied drastically from the regional targets 

despite the average regional volume fraction constraint being satisfied, the constraint would be 

redundant in terms of maintaining bone remodelling properties. The scaling also allowed for 

sufficient precision in the design variable adjustments during the optimisation whilst using a 

‘move’ value of 0.1, which had favourable convergence and run time performance. The scaling was 

set to comply with additive manufacturing capabilities, with the chosen volume fraction range 

lying within that which can easily be created by selective laser manufacture. 

𝑥 =
𝑥𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 − 0.06

0.1 − 0.06
(26) 

𝑐 
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𝑐 
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8 
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4 3 

FIGURE 18 - ELEMENT SHAPE FUNCTIONS 
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TABLE 2 - SCALED VOLUME FRACTION TARGETS 

Region Volume Fraction 
Target 

Scaled Volume 
Fraction Target 

Left1 0.080 0.506 

Left2 0.072 0.301 

Left3 0.070 0.255 

Right1 0.082 0.552 

Right2 0.081 0.515 

Right3 0.079 0.478 

The modulus – volume fraction relationship used (Equation 27) accounted for this scaling. 

𝐸 = (26863 × [(0.1 − 0.06)𝑥 + 0.06] − 1595.4) × 109 (27) 

The topology optimisation result was as shown in Figure 19. The region of low volume fractions 

highlighted appeared due to the region of tri-directional fixing being directly below it.  

3.4. DEVELOPING A STRESS SOLVER 

The stress solver was built in MATLAB to allow stress solutions based on the topology optimisation 

design to be found and appropriate adjustments to be made easily and rapidly.   

3.4.1. FINDING STRESSES AND VALIDATION 

The 6-component stress vector for each element was found from the finite element method as in 

Equation 28, where [𝑢𝑒] is the 24-component element displacement vector.  

𝜎𝑒 = [𝐶
0][𝐵][𝑢𝑒] ∙ 𝐸(𝜌) =

[
 
 
 
 
 
𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑥𝑦
𝜎𝑦𝑧
𝜎𝑥𝑧]

 
 
 
 
 

(28) 

FIGURE 19 – TOPOLOGY OPTIMISATION RESULT AFTER REGIONALISATION AND MODULUS RELATION 

IMPLEMENTATION 
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A cantilever beam example with parameters shown in Figure 20 was considered, and hand 

calculations were done to find expected values for both wall stress and beam end displacement as 

in Equations 29 and 30 in order to validate the stress vector formulation as well as the global 

stiffness matrix formulation described previously. The stress and displacement values obtained 

from the script matched these within an acceptable error as shown in Table 3. 

 

 

 

𝑢 =
1

𝐸𝐼
(0.03𝐹𝑁𝑥

2 −
1

6
𝐹𝑁𝑥

3) (29) 

𝜎𝑥 =
𝑀𝑦

𝐼
(30) 

TABLE 3 – COMPARISON OF HAND CALCULATED PARAMETERS WITH THOSE OBTAINED FROM SCRIPT  

 Hand Calc. Value Value from Script Error 

End 𝑢, 𝐹𝑁 = 5𝑁 0.135 m 0.152 m 12.6% 

Built in max 𝜎𝑥, 𝐹𝑁 = 5𝑁 -1.13 MPa -1.26 MPa 11.5% 

Built in max 𝜎𝑥, 𝐹𝑁 =

90𝑁 

-20.25 MPa -22.66 MPa 11.9% 

 

3.4.2. LOCATION OF STRESS EVALUATION 

The element stress vectors were a function of the local element coordinates owing to the 

functional dependence on [𝐵] (the quoted stress values in Table 3 were evaluated at the element 

centre). Though the stress values are most accurately obtained at the Gauss points, the degree to 

which the stress varied through an element was investigated. Figures 21 and 22 below capture the 

variation of the direct stresses when evaluated at the centre, each of the element nodes and each 

of the element Gauss points for the cantilever beam element and the three implant elements 

indicated. The results showed significant variation (more so for the nodal stress evaluations as 

expected). However, the average of the stresses evaluated at each of the Gauss points, as well as 

the average of the stresses evaluated at each of the nodes, was equal to the stresses evaluated at 

FN 

60x4x20 mm E = 1 MPa 

FIGURE 20 – CANTILEVER BEAM CASE USED FOR 

VERIFICATION 
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the centre of the element for all cases. It was therefore decided that stress vectors could 

reasonably be evaluated at the centre of the element concerned. 

 

 

FIGURE 21 – VARIATION OF DIRECT STRESSES IN CANTILEVER BEAM ELEMENT SHOWN  
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FIGURE 22 – VARIATION OF DIRECT STRESSES IN IMPLANT ELEMENTS SHOWN 

3.4.3. FAILURE ANALYSIS 

A global stress matrix of 𝜎𝑉𝑀 values was found by applying Equation 17 to each of the elements 

after calculating the element stress vector. The yield criterion could then be evaluated as in 

Equation 31 to determine which elements of the implant mesh were predicted to experience 
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failure. The yield stress of the lattice material was dependent upon the volume fraction – the 

trend in Figure 23 was drawn using data obtained from the Biomechanics Group.  

 

FIGURE 23 – YIELD STRESS – VOLUME FRACTION RELATIONSHIP 

𝜎𝑉𝑀 > 𝜎𝑦𝑖𝑒𝑙𝑑 (31) 

The stress distribution, failure behaviour and the closeness to modulus targets in the topology 

optimised design could be compared to a ‘Control’ design shown in Figure 24, where all volume 

fractions were set to their region target values to achieve perfect bone modulus matching, 

therefore maximising remodelling capability. Comparisons could also be made to a solid structure 

where all volume fractions were set to 1 with all element moduli set to 110 GPa. This represents 

the current standard use tibial trays; the other extreme to the ‘Control’ design, with perfect 

strength capabilities but poor bone remodelling capabilities. 

3.5. STRESS SATISFYING HYBRID DESIGNS 

Having established the element stresses experienced by the stiffness topology optimisation 

design, it was possible to create an alternative design that matched each element’s yield stress to 
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its experienced stress. This was done by setting volume fractions using the trend in Figure 23, 

according to the von mises stress in that element. This design was termed ‘Stress Limited’. This 

could then be paired with the ‘Stiffness Top Op’ design, to create a hybrid design that increased 

the volume fraction of all elements predicted to fail to their corresponding ‘Stress Limited’ value. 

The resulting design was termed ‘Stress Limited Top Op’. An identical process was followed for the 

‘Control’ design to create a ‘Stress Limited Control’ design. 

Each of these three stress limited designs were expected to predict no failures, since the volume 

fractions had been adjusted for this express purpose. Nevertheless, despite a lower number of 

element failures being predicted in each of the three designs than both the ‘Stiffness Top Op’ and 

‘Control’ designs, the value was non-zero for each. This was due to the change in the structure’s 

volume fraction distribution causing a change in the structure’s stress distribution as summarised 

in Figure 25. This meant that the ‘Stress Limited’ and hybrid designs’ attempt at complete failure 

prevention based upon the ‘Stiffness Top Op’ design’s stress distribution was partly invalidated. 

The dependence of the stress distribution upon the volume fraction distribution is worth exploring 

further at this point. 

3.5.1. UNDERSTANDING THE STRESS – VOLUME FRACTION RELATIONSHIP 

Upon initial consideration, it was thought that the stress distribution should have no functional 

dependence on the volume fraction. This was suggested by considering the element stress vector 

equation (Equation 28) with the element level application of the force-displacement equation 

(Equation 7), leading to the following derivation: 

𝜎𝑒 = [𝐶
0][𝐵][𝑢𝑒] ∙ 𝐸(𝜌) = [𝐶0][𝐵][𝐾𝑒]

−1[𝐹𝑒] ∙ 𝐸(𝜌) 

FIGURE 25 – DEFICIENCY OF STRESS LIMITING AND HYBRID APPROACH FOR 

REMOVING ANY PRECITED FAILURES 
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= [𝐶0][𝐵][𝐾𝑒
0 ∙ 𝐸(𝜌)]−1[𝐹𝑒] ∙ 𝐸(𝜌) = [𝐶

0][𝐵][𝐾𝑒
0]−1[𝐹𝑒] ≠ 𝑓(𝜌) 

However, it was realised that the element displacement vector could not be considered as the 

solution of an element level force-displacement equation, as this would negate the effect of the 

surrounding elements. In the case that an element’s volume fraction remains unchanged whilst 

the surrounding elements’ volume fractions change, the [𝑢𝑒] component of the element’s stress 

vector will change whilst 𝐸(𝜌) will not. This demonstrates the dependence of all individual 

element stresses upon the global volume fraction distribution. It should be noted that this verifies 

the possibility of conducting a non-penalising stress topology optimisation. Whereas penalising 

stress topology optimisations impose a penalising function, 𝜂𝑆(𝜌𝑒), on the solid stress vector, 

which establishes a functional dependence of the stress upon the volume fraction, a non-

penalising case demands a true physical relationship, similarly to how the non-penalising stiffness 

topology optimisation used the empirical modulus – volume fraction relation. The confirmation of 

this relation proves a non-penalising stress topology optimisation possible. 

3.5.2. CONVERGENT STRESS LIMITED 

To improve upon the stress limited designs, a script was written to loop the stress limited volume 

fraction adjustment process until convergence. The convergence criterion was that no elements 

should be predicted to fail subject to the required failure-preventing volume fraction adjustment 

not exceeding 0.2 – the maximum volume fraction that could be produced by the additive 

manufacture process. This is described by Figure 26. The process was highly sensitive to the initial 

condition. The ‘Convergent Stress Limited’ design was obtained from this process having set an 

initial design where all element volume fractions were 0.08, the average of the regional targets, to 

minimise the consequent deviation from these targets. Upon convergence, 12.0% of the tibial tray 

elements were still predicted to fail, though this represented an improvement upon all designs 

created previously. Increasing the initial condition continuous volume fraction progressively 

reduced the number of remaining element failures following the optimisation. A minimum 

continuous volume fraction initial condition of 0.17 was needed for no element failures to be 

predicted by the script, although no adjustment was made by the script in this case – the initial 

condition itself did not contain any predicted element failures. Non-continuous volume fraction 

distributions in the initial condition were explored by assigning random values to all elements 

between 0.08 and 0.2, which converged to a design where only 1.24% of elements were predicted 

to fail.  
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FIGURE 26 – CONVERGENT STRESS LIMITED PROCESS 

3.6. DEVELOPING A NON-PENALISING STRESS TOPOLOGY OPTIMISATION 

Creating the stress limited and hybrid designs revealed a complicated relationship between the 

volume fraction distribution and the material stresses. This evidenced the utility of a stress-based 

topology optimisation, which had the potential to achieve the project aim elegantly and in the 

most explicit manner – ensuring sufficient tibial tray strength against failure whilst maintaining 

bone remodelling capability as much as possible. Though the optimisation process would have to 

be adjusted from the non-penalising stiffness topology optimisation developed previously, the 

optimality criteria approach would be adopted, as this would provide a well-understood 

framework. The cost function to be minimised in this case was the deviation of the regional 

volume fractions from their targets. This was simplified as the minimisation of the sum of the 

volume fractions, since any stress satisfying design was expected to demand all elements to have 

higher volume fractions than their regional target. The constraint of each element’s experienced 

von mises stress being below its yield stress found from the trend in Figure 23 was initially 

considered. However, this was rejected since it would have required a separate optimisation to be 

run for each element, which would have been highly computationally expensive and inefficient. An 

alternative constraint formulation would be to keep the maximum von mises stress below a 

constant yield stress value. A 4.4 MPa yield stress (corresponding to a volume fraction of 0.08) was 

considered, since the optimised design was not expected to contain any element volume fractions 

lower than this value. However, it was suspected that this tight constraint might make the 

optimisation unsolvable and was likely to be unnecessarily conservative. In a structure where the 

volume fractions vary from 0.08 to 0.2 for example, it is possible (though not certain) that no 

element failures will occur when a yield stress corresponding to a 0.15 volume fraction is chosen in 

the maximum stress constraint. Nevertheless, this is contingent upon the elements with volume 

fractions below 0.15 each having von mises stress values sufficiently below the maximum to also 

be below that element’s yield stress. Selecting the yield stress value was therefore non-trivial. 
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3.6.1. CLUSTERED STRESS APPROACH 

Another issue with the constraint function was the use of the maximum von mises stress. This was 

unsuitable since the adjoint method optimisation would require the derivatives of the cost and 

constraint functions to be taken, and the maximum function is non-differentiable. As mentioned in 

Section 2.4.2, a clustered stress approach is taken to overcome this, as described by the P-norm 

stress in Equation 16, reproduced below. 

𝜎𝑖
𝑃𝑁 = (

1

𝑁𝑖
∑(𝜎𝑎

𝑉𝑀)𝑝)

𝑎𝜖𝛺𝑖

1
𝑝

 

The 𝑝 exponent is critical in determining what the P-norm stress of the cluster represents. A P-

norm stress with 𝑝 = 1 represents the mean von mises stress whereas one with 𝑝 = ∞ represents 

the maximum von mises stress (since 𝑝 must be less than this value to ensure differentiability, the 

P-norm stress will always be lower than the maximum stress for the cluster). Literature 

recommends a  𝑝 value of 8 for the stress constrained topology optimisation to avoid numerical 

problems. The total number of clusters, 𝑛𝑖, and the distribution of elements contained within each 

cluster, 𝛺𝑖, also effects the stress measure. Setting the number of clusters equal to the number of 

elements eliminates the computational advantage of not imposing separate constraints on each 

element. Using only one cluster on the other hand is too rough of an approach and ignores the 

distribution of stresses. With a resolution of 0.6 elements per mm, the implant contained 4514 

elements, for which 50 clusters were used. The local stresses contained within each cluster is best 

approximated by assembling clusters that group elements with similar stress levels. Therefore, 

upon each iteration of the optimisation, the elements were organised in order of descending von 

mises stresses. Once in this order, elements were assigned in turn to a cluster until it was filled 

before filling the next cluster. Each cluster was of equal size 
𝑛𝑎

𝑛𝑖
 apart from the last cluster which 

was smaller. This approach is summarised in Figure 27. A significant advantage of this approach is 

that the stress constraint of each cluster could be made equal to the yield stress corresponding to 

the lowest volume fraction within that cluster. This would solve the aforementioned issue related 

to overly conservative constraints. 

 

FIGURE 27 – CLUSTERING SCHEME 
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3.6.2. P-NORM STRESS SENSITIVITY DERIVATION 

The problem formulation could be written as follows. A separate optimisation would be conducted 

for each stress cluster, adjusting the constraint accordingly. 

ℙ =

{
 
 

 
 

𝑚𝑖𝑛∑𝜌𝑒(𝑥)

𝑛𝑒

𝑒=1

𝑠. 𝑡. {
𝜎𝑖
𝑃𝑁(𝑥) ≤ 𝜎�̅�
0 < 𝑥𝑒 ≤ 1

 

Following the optimality criteria method applied to the stiffness topology optimisation, this was 

written in terms of a reformulated Lagrange function as in Equation 32, to define an optimisation 

satisfaction parameter, 𝐵𝑒, for each element. 

𝐵𝑒 = −
1

𝜆

(
𝜕𝜌𝑡𝑜𝑡
𝜕𝑥𝑏

)

(
𝜕𝜎𝑖

𝑃𝑁

𝜕𝑥𝑏
)

(32) 

This was to be used in assembling a global sized 𝐵𝑒 matrix for the cluster, which could then 

‘nudge’ each element’s design variable in the appropriate direction before adjusting the Lagrange 

multiplier using the bisector method as described by Figure 17. The stress topology optimisation 

simulation would therefore be essentially identical to the stiffness topology optimisation following 

the computation of the global 𝐵𝑒 matrices, with a separate optimisation being conducted upon 

each stress cluster using appropriate stress constraints. 

As with the stiffness topology optimisation, the global 
𝜕𝜌𝑡𝑜𝑡

𝜕𝑥
 matrix consisted of ones everywhere in 

the implant space since each entry was the sum of that element’s filter weighting value 

contributions for all volume fractions. From the definition of the filter described in Section 2.4.1., 

this is always equal to 1. This is summarised below. 

𝜕𝜌𝑡𝑜𝑡
𝜕𝑥𝑏

=∑
𝜕𝜌𝑒
𝜕𝑥𝑏

𝑛𝑒

𝑒

=∑𝑊𝑒𝑏 = 1

𝑛𝑒

𝑒

 

Calculating the 
𝜕𝜎𝑖

𝑃𝑁

𝜕𝑥𝑏
 value of each element to assemble the global 

𝜕𝜎𝑖
𝑃𝑁

𝜕𝑥
 matrix was complex, since 

𝜎𝑖
𝑃𝑁 depended upon the von mises stresses of each of the elements within cluster 𝛺𝑖, which 

themselves each depended upon that element’s stress vector, which themselves each depended 

upon the design variable 𝑥𝑏 being differentiated with respect to. This is best expressed by 

Equation 33, obtained by applying the chain rule. This laid out three separate sensitivities that 
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would have to be derived. 
𝜕𝜎𝑖

𝑃𝑁(𝑥)

𝜕𝜎𝑎
𝑉𝑀  would be a scalar, whereas 

𝜕𝜎𝑎
𝑉𝑀(𝑥)

𝜕𝜎𝑎
 and 

𝜕𝜎𝑎(𝑥)

𝜕𝑥𝑏
 were each 6-

component vectors since they both included the 𝜎𝑎 stress vector. 

𝜕𝜎𝑖
𝑃𝑁

𝜕𝑥𝑏
= ∑

𝜕𝜎𝑖
𝑃𝑁(𝑥)

𝜕𝜎𝑎
𝑉𝑀 (

𝜕𝜎𝑎
𝑉𝑀(𝑥)

𝜕𝜎𝑎
)

𝑇
𝜕𝜎𝑎(𝑥)

𝜕𝑥𝑏

𝑛𝑎

𝑎𝜖𝛺𝑖

(33) 

𝜕𝜎𝑖
𝑃𝑁(𝑥)

𝜕𝜎𝑎
𝑉𝑀  could be derived from the definition of 𝜎𝑖

𝑃𝑁 (Equation 16) as follows: 

𝜕𝜎𝑖
𝑃𝑁(𝑥)

𝜕𝜎𝑎
𝑉𝑀 =

1

𝑝
(
1

𝑁𝑖
∑(𝜎𝑎

𝑉𝑀(𝑥))
𝑝
 

𝑛𝑎

𝑎𝜖𝛺𝑖

)

1
𝑝
−1

∙
𝑝

𝑁𝑖
(𝜎𝑎

𝑉𝑀(𝑥))
𝑝−1

 

→
𝜕𝜎𝑖

𝑃𝑁(𝑥)

𝜕𝜎𝑎
𝑉𝑀 = (

1

𝑁𝑖
∑(𝜎𝑎

𝑉𝑀(𝑥))
𝑝
 

𝑛𝑎

𝑎𝜖𝛺𝑖

)

1
𝑝
−1

∙
1

𝑁𝑖
(𝜎𝑎

𝑉𝑀(𝑥))
𝑝−1

(34) 

𝜕𝜎𝑎
𝑉𝑀(𝑥)

𝜕𝜎𝑎
 could be derived from the definition of 𝜎𝑎

𝑉𝑀  (Equation 17) as follows: 

𝜕𝜎𝑎
𝑉𝑀(𝑥)

𝜕𝜎𝑎
=

(

 
 
 
 
 
 
 
 
 
 
 
 

𝜕𝜎𝑎
𝑉𝑀

𝜕𝜎𝑎𝑥
𝜕𝜎𝑎

𝑉𝑀

𝜕𝜎𝑎𝑦

𝜕𝜎𝑎
𝑉𝑀

𝜕𝜎𝑎𝑧
𝜕𝜎𝑎

𝑉𝑀

𝜕𝜎𝑎𝑥𝑦

𝜕𝜎𝑎
𝑉𝑀

𝜕𝜎𝑎𝑦𝑧

𝜕𝜎𝑎
𝑉𝑀

𝜕𝜎𝑎𝑥𝑧)

 
 
 
 
 
 
 
 
 
 
 
 

=

(

 
 
 
 
 
 
 
 
 
 

1

2𝜎𝑎
𝑉𝑀 (2𝜎𝑎𝑥 − 𝜎𝑎𝑦 − 𝜎𝑎𝑧)

1

2𝜎𝑎
𝑉𝑀 (2𝜎𝑎𝑦 − 𝜎𝑎𝑥 − 𝜎𝑎𝑧)

1

2𝜎𝑎
𝑉𝑀 (2𝜎𝑎𝑧 − 𝜎𝑎𝑦 − 𝜎𝑎𝑥)

3

𝜎𝑉𝑀
𝜎𝑎𝑥𝑦

3

𝜎𝑉𝑀
𝜎𝑎𝑦𝑧

3

𝜎𝑉𝑀
𝜎𝑎𝑥𝑧 )

 
 
 
 
 
 
 
 
 
 

(35) 

From Equation 28, the following expression for 
𝜕𝜎𝑎(𝑥)

𝜕𝑥𝑏
 was obtained: 

𝜕𝜎𝑎(𝑥)

𝜕𝑥𝑏
= [𝐶0][𝐵] (𝑢𝑎

𝜕𝐸𝑎
𝜕𝑥𝑏

+ 𝐸𝑎
𝜕𝑢𝑎
𝜕𝑥𝑏

) (36) 

The 𝑢𝑎 element displacement vector was obtained by extracting the global displacement vector 

entries corresponding to the degree of freedom IDs for that element. The 
𝜕𝐸𝑎

𝜕𝑥𝑏
 and 

𝜕𝑢𝑎

𝜕𝑥𝑏
 derivatives 

were derived as in Appendix 8.1. Consequently, the following expression for 
𝜕𝜎𝑖

𝑃𝑁

𝜕𝑥𝑏
 was obtained. 
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𝜕𝜎𝑖
𝑃𝑁

𝜕𝑥𝑏
= ∑ (

1

𝑁𝑖
∑(𝜎𝑎

𝑉𝑀(𝑥))
𝑝
 

𝑛𝑎

𝑎𝜖𝛺𝑖

)

1
𝑝
−1

∙
1

𝑁𝑖
(𝜎𝑎

𝑉𝑀(𝑥))
𝑝−1

∙

(

 
 
 
 
 
 
 
 
 
 

1

2𝜎𝑎
𝑉𝑀 (2𝜎𝑎𝑥 − 𝜎𝑎𝑦 − 𝜎𝑎𝑧)

1

2𝜎𝑎
𝑉𝑀 (2𝜎𝑎𝑦 − 𝜎𝑎𝑥 − 𝜎𝑎𝑧)

1

2𝜎𝑎
𝑉𝑀 (2𝜎𝑎𝑧 − 𝜎𝑎𝑦 − 𝜎𝑎𝑥)

3

𝜎𝑉𝑀
𝜎𝑎𝑥𝑦

3

𝜎𝑉𝑀
𝜎𝑎𝑦𝑧

3

𝜎𝑉𝑀
𝜎𝑎𝑥𝑧 )

 
 
 
 
 
 
 
 
 
 

𝑇

∙ [𝐶0][𝐵] (𝑢𝑎
𝜕𝐸

𝜕𝜌
∙
𝐻(𝑎, 𝑏)

𝐻𝑠(𝑎)
+ 𝐸𝑎

𝜕𝑢𝑎
𝜕𝑥𝑏

)

𝑛𝑎

𝑎𝜖𝛺𝑖

(37) 

A script was written to assemble a separate global 
𝜕𝜎𝑖

𝑃𝑁

𝜕𝑥
 matrix for each of the 𝑖 clusters to be used 

in each of the 𝑖 optimisations. The number of times Equation 37 had to be computed was 

therefore equal to the number of elements multiplied by the number of clusters. This imposed a 

very large computational expense and made the formulation of global 
𝜕𝜎𝑖

𝑃𝑁

𝜕𝑥
 matrices and therefore 

the stress topology optimisation for the tibial tray unfeasible without extra computational 

resource. Regardless, the primary focus of the stress topology optimisation work was finding the 

first five entries of the global 
𝜕𝜎𝑖

𝑃𝑁

𝜕𝑥
 matrices for a simple three-cluster cantilever beam case, before 

attempting to verify these values by developing a script to calculate finite difference 

approximations of the values. The finite difference approximation for each global matrix 

component 𝑏 of a given cluster 𝑖 could be found as in Equation 38, and a script was written to 

implement this. Achieving a verified computation of the P-norm stress sensitivity matrix would 

essentially constitute the creation of a non-penalising stress topology optimisation, with the only 

remaining steps being to integrate each cluster’s sensitivity matrix into Equation 32 for the 

respective optimisation and running the simulation on the tibial tray structure using sufficient 

computational resource. 

𝜕𝜎𝑖
𝑃𝑁

𝜕𝑥𝑏
≈
𝜎𝑖
𝑃𝑁(𝑥𝑏 + 𝛿𝑥) − 𝜎𝑖

𝑃𝑁(𝑥𝑏)

𝛿𝑥
(38) 

4. RESULTS 

The design results arrived upon following the methodology described were as follows: 

1) ‘Control’ – All volume fractions made equal to their regional target value to achieve 

regional modulus targets. 

2) ‘Stiffness Top Op’ – Stiffness maximising topology optimisation with average regional 

volume fraction target constraints. 



37 
 

3) ‘Stress Limited’ – Volume fractions set such that element yield stresses were made equal to 

their experienced stresses according to the stress distribution of ‘Stiffness Top Op’. 

4) ‘Stress Limited Control’ – Volume fractions within the ‘Control’ design compared to 

respective element volume fractions within the ‘Stress Limited’ design and adjusted to 

these values if they are greater. 

5) ‘Stress Limited Top Op’ – Volume fractions within the ‘Stiffness Top Op’ design compared to 

respective element volume fractions within the ‘Stress Limited’ design and adjusted to 

these values if they are greater. 

6) ‘Convergent Stress Limited’ – With an initial condition of all elements having volume 

fractions of 0.08, looping the process of defining a stress limited design based on the stress 

distribution and making comparisons to form a ‘hybrid’ design. Looped until convergence 

with a constraint of no volume fraction exceeding 0.2. Designs 4 and 5 are single iteration 

cases of this approach with the initial condition being the ‘Control’ and ‘Stiffness Top Op’ 

designs respectively. 

A solid material design result with all volume fractions set to 1 and a modulus of 110 GPa was also 

used as a control. 

The key result of the non-penalising stress topology optimisation work was comparison of the 

analytical results obtained with the finite difference P-norm stress sensitivity. 

4.1. DESIGN RESULTS 

For each design result, the maximum stress, percentage of predicted element failures, average 

percentage deviation from modulus targets and average volume fractions by region and overall 

was compared. Additionally, the vertical displacement of the implant at the location described by 

Figure 27 were compared, as these were expected to be the locations of greatest deflection. The 

dwell point was the location of load application in the ISO test. 

 

FIGURE 27 – LOCATIONS OF DISPLACEMENT MEASUREMENT 
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The results were as summarised in Table 4 and Figures 28 and 29. It should be noted that these 

results were for right-hand side tibial tray designs (the lateral inversion of left-hand side designs). 

TABLE 4 – RESULTS FOR THE SIX DESIGNS 

  1 2 3 4 5 6 Solid 

Maximum Stress (MPa) 22.2 23.1 78.6 63.4 62.4 63.3 22.0 

% Predicted Element Failures 40.3% 33.5% 28.2% 22.2% 21.4% 12.0% 0% 

% Average Deviation from 
Modulus Targets 

0% 14.3% 22.8% 12.0% 20.8% 95.0% 22674% 

Average Volume Fractions 
 

Overall (Target = 0.080) 
{% Deviation from Target} 

0.08 
{0%} 

0.08 
{0%} 

0.079 
{1.25%} 

0.0895 
{11.9%} 

0.0863 
{7.88%} 

0.0981 
{22.6%} 

1 
{1150%} 

R1 (Target = 0.080) 0.08 0.08 0.0704 0.0826 0.0818 0.0827 1 

R2 (Target = 0.072) 0.072 0.072 0.0928 0.0982 0.093 0.1161 1 

R3 (Target = 0.070) 0.07 0.07 0.0896 0.0995 0.0896 0.1389 1 

L1 (Target = 0.082) 0.082 0.082 0.0787 0.089 0.0861 0.0945 1 

L2 (Target = 0.081) 0.081 0.081 0.0991 0.1074 0.0991 0.1363 1 

L3 (Target = 0.079) 0.079 0.079 0.1005 0.1116 0.1005 0.1665 1 

Deflection (mm)    
Anterior 0.0334 0.0118 0.00464 0.0189 0.0100 0.0255 0.000175 

Posterior 0.0148 0.0092 0.00345 0.00425 0.00380 0.00288 0.0000622 

Dwell Point 1.30 0.970 0.596 0.563 0.540 0.441 0.00566 

Medial 2.70 2.10 1.20 1.10 1.10 0.782 0.0113 

The average percentage deviation from the modulus targets was found from the average absolute 

percentage deviations from volume fraction targets – equivalent due to the linear relation 

between the properties. Though similar in formulation, this was non-identical to the percentage 

deviation from the average overall volume fraction target (Equation 39). 

∑
|𝑉𝑜𝑙𝑓𝑟𝑎𝑐𝑠(: ) − 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑜𝑙𝑓𝑟𝑎𝑐𝑠(: )|

𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑜𝑙𝑓𝑟𝑎𝑐𝑠(: )

𝑁𝑜. 𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
 ≠  

∑𝑉𝑜𝑙𝑓𝑟𝑎𝑐𝑠(: )
𝑁𝑜. 𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

−
∑𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑜𝑙𝑓𝑟𝑎𝑐𝑠(: )
𝑁𝑜. 𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

∑𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑉𝑜𝑙𝑓𝑟𝑎𝑐𝑠(: )
𝑁𝑜. 𝐼𝑚𝑝𝑙𝑎𝑛𝑡 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

(39) 

 

FIGURE 28 – ELEMENT FAILURE AND MODULUS TARGET DEVIATION COMPARISON 
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The volume fraction distribution of each design as well as the stress and element failure 

distributions are show visually in Figures 30-41. 

 

 

 

FIGURE 30 – ‘CONTROL’ VOLUME FRACTION DISTRIBUTION VISUALISATION 

 

FIGURE 31 – ‘STIFFNESS TOP OP’ VOLUME FRACTION DISTRIBUTION VISUALISATION 
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FIGURE 29 – LOCATIONAL DEFLECTION COMPARISON 
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FIGURE 32 – ‘STRESS LIMITED’ VOLUME FRACTION DISTRIBUTION VISUALISATION 

 

FIGURE 33 – ‘STRESS LIMITED CONTROL’ VOLUME FRACTION DISTRIBUTION VISUALISATION 

 

FIGURE 34 – ‘STRESS LIMITED TOP OP’ VOLUME FRACTION DISTRIBUTION VISUALISATION 

 

FIGURE 35 – ‘CONVERGENT STRESS LIMITED’ VOLUME FRACTION DISTRIBUTION VISUALISATION 
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FIGURE 37 – ‘STIFFNESS TOP OP’ STRESS AND FAILURE DISTRIBUTION VISUALISATION 

 

 

 

FIGURE 36 – ‘CONTROL’ STRESS AND FAILURE DISTRIBUTION VISUALISATION 
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FIGURE 38 – ‘STRESS LIMITED’ STRESS AND FAILURE DISTRIBUTION VISUALISATION 

 

FIGURE 39 – ‘STRESS LIMITED CONTROL’ STRESS AND FAILURE DISTRIBUTION VISUALISATION 
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FIGURE 40 – ‘STRESS LIMITED TOP OP’ STRESS AND FAILURE DISTRIBUTION VISUALISATION 

 

FIGURE 41 – ‘CONVERGENT STRESS LIMITED’ STRESS AND FAILURE DISTRIBUTION VISUALISATION 
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4.2. P-NORM STRESS SENSITVITY RESULTS 

Table 5 shows the P-norm stress sensitivity values with respect to the first 5 elements for each of 

three clusters in a cantilever beam with a 900 N end point loading, calculated by the analytical 

solution derived in Section 3.6.2. These were compared with finite difference approximations for 

these values, using a 𝛿 of 0.01 (Table 6) and 𝛿 of 0.05 (Table 7). 

TABLE 5 – ANALYTICAL P-NORM SENSITIVITY VALUES 

  
w.r.t 
element 1 

w.r.t. 
element 2 

w.r.t 
element 3 

w.r.t 
element 4 

w.r.t 
element 5 

Cluster 1 -8.4E+09 -8.9E+09 -1.3E+10 -1.4E+10 -1.6E+10 

Cluster 2 -5.5E+07 -5.6E+07 -4.6E+07 -4.9E+07 -3.2E+07 

Cluster 3 -7E+07 -7.5E+07 -5.5E+07 -1.1E+08 -3.8E+07 

TABLE 6 – FINITE DIFFERENCE P-NORM SENSITIVITY VALUES WITH 𝛿 = 0.01  

 w.r.t 
element 1 

w.r.t. 
element 2 

w.r.t 
element 3 

w.r.t 
element 4 

w.r.t 
element 5 

Cluster 1 -1.10E+07 -1.10E+07 -6860722 -6860722 -2645628 

Cluster 2 -277265 -277265 -202156 -202156 -237028 

Cluster 3 -97015.3 -97015.3 -85985.2 -85985.2 -247305 

TABLE 7 – FINITE DIFFERENCE P-NORM SENSITIVITY VALUES WITH 𝛿 = 0.05  

  
w.r.t 
element 1 

w.r.t. 
element 2 

w.r.t 
element 3 

w.r.t 
element 4 

w.r.t 
element 5 

Cluster 1 -1.10E+07 -1.10E+07 -6795869 -6795869 -2612158 

Cluster 2 -265780 -265780 -196178 -196178 -231058 

Cluster 3 -74089.4 -74089.4 -78222.2 -78222.2 -240199 

5. DISCUSSION 

5.1. KEY FINDINGS 

The most important findings of the project were as summarised: 

• The non-penalising stiffness-maximising topology optimisation offers a 16.9% 

improvement of failure behaviour compared to the ‘Control’ design, with 33.5% of tibial 

tray elements predicted to fail in the former compared with 40.3% in the latter. This was 

achieved with a relatively low average deviation from element modulus targets of 14.3%. 

• The ‘Stress Limited’ and hybrid solutions all reduced the predicted element failure 

percentage further. Though the ‘Stress Limited’, ‘Stress Limited Top Op’ and ‘Convergent 

Stress Limited’ designs do so with a compromise of greater average deviation from 
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modulus targets compared to the ‘Stiffness Top Op’ design, the ‘Stress Limited Control’ 

design in fact reduces the average deviation from modulus targets to 12.0%, as well as 

reducing the predicted element failures to 22.2% (a 44.9% improvement upon the 

‘Control’).  

• In light of this, a convergent solution was sought with the initial condition set to the 

‘Control’ design. This resulted in predicted element failures going down to 11.4% with a 

23.4% average modulus target deviation. This represents a significant improvement upon 

the ‘Convergent Stress Limited’ design, where 12.0% of elements were predicted to fail 

with a 95.0% average modulus target deviation. This demonstrates the strong initial 

condition sensitivity of the convergent stress limiting approach – using the actual targets in 

the initial condition design instead of a design with a continuous volume fraction equal to 

the average overall target value of 0.08 gave a similar percentage element failure 

prediction but with much better modulus matching. The process’ initial condition design 

and iteration number could therefore be tuned to arrive upon the desired compromise 

between failure behaviour and bone remodelling. 

• A minimum continuous volume fraction of 0.17 was needed for no element failures to be 

predicted. The average deviation from the target moduli in this case was 112.5%. 

• Failure behaviour, modulus target deviation and all deflections except at the anterior point 

had similar general trends between designs – decreasing failure and displacement but 

increasing modulus target compromise in the following: order ‘Control’, ‘Stiffness Top Op’, 

‘Stress Limited’ and single-iteration hybrid results, ‘Convergent Stress Limited’, fully solid. 

The trend in anterior point deflections between designs was less predictable. 

• For P-norm sensitivities, analytical results were consistently an order of 2-3 greater than 

the finite difference approach. The analytical solution derivation and implementation 

should be further investigated, particularly the 
𝜕𝐾

𝜕𝑥𝑏
 matrix formulation, which is suspected 

to be the source of error for its complexity. 

5.2. COMPARISONS TO LITERATURE 

Peto et al. investigated a SIMP binary compliance-minimising topology optimisation with a weight 

constraint, performed upon the mid region of the head of an intramedullary knee implant [28]. 

This was found to increase the magnitude of the maximum deflection and von mises stress by 

14.4% and 1.7% respectively, when a 30% weight reduction constraint was set. Since solid 

stainless steel material was used, the yield stress was constant and far greater than the maximum 
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stress before and after the optimisation, and failure behaviour therefore did not need to be 

considered. The non-penalising compliance-minimising topology optimisation in this project also 

increased the maximum von mises stress marginally, by 4.1%, but the maximum measured 

deflection fell by 22.2%. The typical SIMP approach minimises compliance subject to a minimum 

void-creation constraint, whereas the non-penalising approach developed in this project 

minimised compliance with a constraint on the maximum average volume fraction, without 

seeking to create any voids. This may explain why the maximum deflection values change in 

opposite directions in the two cases – for the former approach, though element stiffness values 

are maximised, the void creation results in a stiffness reduction of the overall structure. 

Boccini et al. conducted a lattice-integrating SIMP compliance-minimising topology optimisation 

upon a turbine disc using the OptiStruct solver, with constraints upon the vibration mode, 

maximum stress, and volume reduction [29]. A relaxed penalisation factor of 1.8 was used to 

achieve a design containing intermediate design variable values, before assigning element with 

high values as solid material, those with low values as voids and those with intermediate values as 

lattice material with strut radii proportional to the intermediate value of that element. The 

solution saw a 17% reduction in mass and 6% reduction in maximum stress compared to the 

original design. The favourable outcome is encouraging for the mass-minimising, stress-

constrained topology optimisation considered in Section 3.6. Expected outcomes may be 

investigated by running an OptiStruct optimisation on the tibial tray with such an objective 

function and constraint, using a penalisation factor of 1 and defining an appropriate range on 

intermediate-classified design values to achieve a fully lattice structure design. A deficiency in the 

OptiStruct solver is a lack of volume fraction-yield strength relation implementation, necessitating 

an overly conservative stress constraint as discussed in Section 3.6. 

5.3. LIMITATIONS 

One major limitation of the results obtained as evidenced by the stress distributions for all designs 

was the insufficient element thickness of the plateau region. The region was three elements thick, 

but due to the loading condition, would experience a bending stress. The 𝜎𝑥𝑥 in the plateau region 

would therefore vary drastically through the thickness, from a maximum positive tensile stress at 

the top to an equal magnitude negative compressive stress at the underside. The very low stress 

values of all design’s off-centre plateau regions suggest that the stresses evaluated at element 

centroids here were too close to the neutral axis, failing to capture the large through-thickness 
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change. The designs therefore underpredicted stresses in this region. Two possible mitigations 

could be implemented in future work. Firstly, a finer mesh could be used overall or in the plateau 

region. However, this would have increased the computational expense significantly. Alternatively, 

while the stress vectors had been evaluated at element centroids in this project, the true potential 

stresses experienced by each element could have been captured by evaluating stress vectors at 

each node and Gauss point as in Section 3.4.2, finding von mises stresses from each, and assigning 

the element’s von mises stress as the greatest of these. This would increase the stress evaluation 

function’s run time by a factor of eight. 

Another limitation of the project was the data available from which to draw the modulus-volume 

fraction relation of Figure 9 and the yield stress-volume fraction relation of Figure 23. The 

trendlines were drawn from only five datapoints, with the lowest volume fraction datapoint being 

0.076, therefore requiring the trend to be extrapolated throughout the simulations. An improved 

trendline could be drawn by conducting material testing on a greater number of lattice material 

specimens concentrated in the volume fraction range of 0.05-0.2. 

Applying the continuum assumption inherent in the finite element methods to the lattice structure 

may be another limitation. A more accurate but infeasible approach would be to model a solid 

continuum at the location of the struts only, to perfectly map the lattice architecture, and account 

for the complex, micro-level strut stress behaviour as described in Section 2.3. Nevertheless, 

literature suggests that a continuum assumption is valid for a lattice structure provided the 

response is not dominated by in-plane motion of single-layer grids [30], which the lattice 

structured tibial tray is expected to satisfy. 

5.4. CLINICAL SIGNIFICANCE 

The potential to improve bone remodelling behaviour by matching the modulus values of a knee 

implant’s tibial tray with its surrounding tibia material has been well understood by the 

Biomechanics Group. However, without ISO certification, the implant design cannot be approved 

for use in knee arthroplasty patients, due to fatigue failure risks. Failure behaviour-improving 

methodologies, designed to retain remodelling capability to a reasonable degree, have been 

presented, which may be developed further to achieve an ISO-certified design. 
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6. CONCLUSIONS 

This project develops three key potential avenues to adjusting an additive manufactured lattice 

structure tibial tray design with ideal load-translating behaviour. The effective translation of loads 

from the tibial tray to the surrounding tibia, achieved by matching the component’s anisotropic 

moduli to that of the surrounding bone, negates the typical stress-shielding effect which results in 

bone weakening and potential complication following arthroplasty in modern knee implants. The 

adjustments seek to improve the yield behaviour of the design, with a view to improve ISO test 

performance, with a compromise of greater deviation from imposed modulus targets. The non-

penalising stiffness-maximising topology optimisation approach improved yielding behaviour by 

16.9%. The stress limiting approach developed, which attempted to iteratively match the yield 

stress through the structure with the stress experienced, offered further improvement in the 

yielding behaviour. The degree of compromise upon modulus targets proved highly sensitive to 

initial condition designs and iteration number, offering scope for further exploration. The ‘Stress 

Limited Control’ design resulted from a single iteration upon a fully modulus-matched design and 

improved failure behaviour by 44.9% with only a 12.0% average deviation from modulus targets. A 

novel non-penalising stress-constrained topology optimisation would be the most holistic and 

efficient way to adjust the tibial tray design, the groundwork for which has been investigated. 
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8. APPENDIX 

8.1. DERIVATIONS 

8.1.1. 
𝜕𝐸𝑎

𝜕𝑥𝑏
 DERIVATION 

The modulus of an element depends upon the volume fraction of that element 𝜌𝑎 only, which 

leads to the expression for 
𝜕𝐸𝑎

𝜕𝑥𝑏
 below, by applying chain rule. 

𝜕𝐸𝑎
𝜕𝑥𝑏

=
𝜕𝐸𝑎
𝜕𝜌𝑎

𝜕𝜌𝑎
𝜕𝑥𝑏

 

Since a linear relation between moduli and volume fractions was fitted, 
𝜕𝐸𝑎

𝜕𝜌𝑎
 was trivial and 

identical for all elements. The filtering scheme implementation adopted from top3d calculated a 

vector of all 𝜌 values from a vector of all design variables using the [number of elements x number 

of elements] sized matrix 𝐻 and the [number of elements x 1] sized vector 𝐻𝑠 as below. 

𝜌(: ) = (𝐻 × 𝑥(: )) ∙/𝐻𝑠 

The 
𝜕𝜌𝑎

𝜕𝑥𝑏
 value, representing the element 𝑏 weight factor contribution to 𝜌𝑎, could therefore be 

extracted as follows: 
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𝜕𝜌𝑎
𝜕𝑥𝑏

=
𝐻(𝑎, 𝑏)

𝐻𝑠(𝑎)
 

8.1.2. 
𝜕𝑢𝑎

𝜕𝑥𝑏
 DERIVATION 

The derivation process was to first find 
𝜕𝑈

𝜕𝑥𝑏
 before extracting those entries corresponding to the degree 

of freedom IDs of element 𝑎 to find 
𝜕𝑢𝑎

𝜕𝑥𝑏
. Differentiating through the global force-displacement 

relation and applying the product rule gave 
𝜕𝑈

𝜕𝑥𝑏
 as follows: 

[𝐾][𝑈] = [𝐹] 

𝜕𝐾

𝜕𝑥𝑏
[𝑈] +

𝜕𝑈

𝜕𝑥𝑏
[𝐾] = 0 

𝜕𝑈

𝜕𝑥𝑏
= −[𝐾]−1

𝜕𝐾

𝜕𝑥𝑏
[𝑈] 

Since the [𝐾] matrix depends upon the modulus values of all elements, which itself depends on 

the respective element volume fraction, 
𝜕𝐾

𝜕𝑥𝑏
 was a matrix of equal size to the stiffness matrix, 

assembled as follows by the chain rule: 

𝜕𝐾

𝜕𝑥𝑏
= ∑

𝜕𝐾

𝜕𝐸𝑒

𝜕𝐸𝑒
𝜕𝜌𝑒

𝜕𝜌𝑒
𝜕𝑥𝑏

𝑛𝑒

𝑒=1

 

𝜕𝐸𝑒

𝜕𝜌𝑒
 was a constant found from the linear relation between modulus and volume fraction. 

𝜕𝜌𝑒

𝜕𝑥𝑏
 was 

the element 𝑏 weight factor contribution to 𝜌𝑎, equal to  
𝐻(𝑒,𝑏)

𝐻𝑠(𝑒)
. The 

𝜕𝐾

𝜕𝐸𝑒
 matrix was of equal size to 

the stiffness matrix, with all entries zeroed apart from the 24 x 24 entries corresponding to the 

degree of freedom IDs of element 𝑒. These were set equal to the corresponding 𝐾 matrix entries 

divided by 𝐸𝑒. 
𝜕𝑈

𝜕𝑥𝑏
 was thus found, from which 

𝜕𝑢𝑎

𝜕𝑥𝑏
 could be extracted as follows:  

𝜕𝑈

𝜕𝑥𝑏
= −[𝐾]−1(

𝜕𝐸

𝜕𝜌
∑

𝜕𝐾

𝜕𝐸𝑒

𝑛𝑒

𝑒=1

𝐻(𝑒, 𝑏)

𝐻𝑠(𝑒)
) [𝑈] 

𝜕𝑢𝑎
𝜕𝑥𝑏

=
𝜕𝑈

𝜕𝑥𝑏
(𝐷𝑂𝐹 𝐼𝐷𝑠 𝑜𝑓 𝑎) 


