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Coumt

Rising demand for knee implants.
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Introduction and Background

Standard modern knee implants (~110 Gpa) have far greater modulus than surrounding bone - stress
shielding effect.
This impedes effective bone regeneration and leads to bone weakening = implant loosening and
complications.

The Biomechanics Group are developing a lattice structure knee implant.

By establishing a linear relation, the modulus targets could be translated into lattice volume fraction targets.
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Left 1 0.56 0.080

Left 2 0.34 0.072

Left 3 0.29 0.070

Right 1 0.61 0.082

Right 2 0.57 0.081

Right 3 0.53 0.079




Introduction and Background

* Fully modulus matched tibial tray will not be strong enough to pass the ISO

load cycling test which defines fatigue requirement for clinical use.
* To pass, 5 specimens must survive 10 million cycles of a 900 N load:

* Predicting lattice fatigue behaviour by S-N curve is complex:
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static 900 N load instead, by considering empirical volume

fraction-yield stress relation.
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Project Aim and Overview

Aim: To adapt the design of the lattice structure knee implant to improve
yielding behaviour when exposed to a static ISO test load, whilst maintaining the
favourable bone remodelling properties.

* This would make use of the topology optimisation approach.
» Typically applied to binary compliance problems via a Solid Isotropic Material Penalisation approach.




Project Aim and Overview
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Simulation Environment and Validation

* Implemented meshing of CAD model in MATLAB and application of
loading and fixing condition.
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Created structure global stiffness and von mises stress matrices through finite
methods.
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Simulation Environment and Validation

* Running SIMP stiffness maximising topology optimisation on a cantilever beam CAD
model with appropriate loading and fixing condition reproduced standard result:

Developed non-SIMP stiffness maximising
topology optimisation with regional average
volume fraction targets

* Comparing simulation results for built-in stress of beam and end displacement to
hand-calculated values showed similarity to an acceptable error:
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Fully Modulus-Matched ‘Contro/’Result
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Non-SIMP Stiffness Maximising Stiffness Top Op’ Result

i,

0.079 0.066
2 ° Stresses

Volume fraction distribution

N2

* Maximum stress:
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* Percentage predicted element failures:
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Stress Limiting Process

» Convergence criteria: no yielding subject to 0.2 volume fraction not being exceeded (limit set by additive
manufacture capability).

* Results varied with initial condition and iteration number.
* 4 designs obtained from this process, shown in following slides.
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Stress Limited’ Result

Stress Limited’

- Initial condition: ‘Stiffness Top Op’design.

- lteration no.: ‘half’ — all yield stresses
matched to von mises stresses regardless
of whether element failure predicted™.

Volume fraction distribution

* Maximum stress:
78.6 MPa
* Percentage predicted element failures:
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‘Stress Limited Control’ Result
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Stress Limited Top Op’ Result Stress Limiteddop Ob'
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‘Convergent Stress
Limited’

‘Convergent Stress Limited’ Result
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Volume fraction distribution Stresses

Maximum stress:

63.3 MPa

Percentage predicted element failures:
12.0%

Overall average volume fraction: T e
0098 Failures

Percentage average deviation from
modulus targets:
95.0%

Stress and failure distribution

Initial condition: all
elements with 0.08
volume fraction
(average overall
target for bone
regeneration).
Iteration no.: until
convergence




Discussion
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Stress Constrained Topology Optimisation

* A non-SIMP stress constrained topology optimisation which minimises the average volume fraction
subject to stress constraints would be the most optimal solution.

* Optimisation required assembly of a global matrix of P-norm stress sensitivities with respect to
each element’s design variable for each cluster, which was derived analytically:
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Analytical P-norm Stress Sensitivity Verification

Attempted to verify analytical solution by finding results for the first 5 elements of a 3-cluster
cantilever beam and compare with finite difference approximations.

If sensitivities could be verified, would be able to run stress-constrained topology optimisation
(given sufficient computational resource).

TABLE 1 — ANALYTICAL P-NORM SENSITIVITY VALUES

w.r.t w.r.t. w.r.t w.r.t w.r.t

element1l | element?2 element3 | element4 | element5
Cluster 1 -8.4E+09 -8.9E+09 -1.3E+10 -1.4E+10 -1.6E+10
Cluster 2 -5.5E+07 -5.6E+07 -4.6E+07 -4.9E+07 -3.2E+07
Cluster 3 -7E+07 -7.5E+07 -5.5E+07 -1.1E+08 -3.8E+07

Table 2 - Finite difference P-norm sensitivity values with 6 = 0.01

w.r.t w.r.t. w.r.t w.r.t w.r.t

element1l [element?2 element 3 element4 |[element5
Cluster 1 -1.10E+07 -1.10E+07 -6860722 -6860722 -2645628
Cluster 2 -277265 -277265 -202156 -202156 -237028
Cluster 3 -97015.3 -97015.3 -85985.2 -85985.2 -247305

Was not able to verify analytical solution — finite difference results all an order of 2-3 smaller.
Future work should further investigate the complex P-norm stress sensitivity derivation.




Conclusions

* The non-penalising stiffness-maximising topology optimisation approach improved yielding behaviour by 16.9%
with a 14.3% deviation from modulus targets.

» The looped stress limiting approach offered further improvement in the yielding behaviour, with degree of
compromise upon modulus targets being highly sensitive to initial condition and iteration number.

» ‘Stress Limited Control’ design resulted from a single iteration upon a fully modulus-matched design and
improved failure behaviour by 44.9% with only a 12.0% average deviation from modulus targets.

Future work:
* Further explore and assess designs that can be made from stress limiting looped process.

* Review P-norm stress sensitivity analytical solution to validate successfully. k)

* Lab testing on additive manufactured designs to validate performance.




