Department of Mechanical Engineering

ME4 Individual Project

'Topology Optimisation of Lattice Structure Additive Manufactured Knee Implants'

Seminar

Author: Asad Raja

Supervisor: Jonathan Jeffers

Date: 09/06/21

Introduction and Background

• Rising demand for knee implants.

• Tibial tray component of knee implant resurfaces tibia.

Introduction and Background

- Standard modern knee implants (~110 Gpa) have far greater modulus than surrounding bone → stress shielding effect.
- This impedes effective bone regeneration and leads to bone weakening → implant loosening and complications.
- The Biomechanics Group are developing a lattice structure knee implant.
- By establishing a linear relation, the modulus targets could be translated into lattice volume fraction targets.

Introduction and Background

- Fully modulus matched tibial tray will not be strong enough to pass the ISO load cycling test which defines fatigue requirement for clinical use.
- To pass, 5 specimens must survive 10 million cycles of a 900 N load:

- Predicting lattice fatigue behaviour by S-N curve is complex: $(o^*)^{n_A}$
 - $S^* = C_A A_S \left(\frac{\rho^*}{\rho_S}\right)^{n_A} N_f^{*C_b b_S}$
- Therefore focus was on yielding-prevention under ISO test's static 900 N load instead, by considering empirical volume fraction-yield stress relation.

Project Aim and Overview

Aim: To adapt the design of the lattice structure knee implant to improve yielding behaviour when exposed to a static ISO test load, whilst maintaining the favourable bone remodelling properties.

- This would make use of the topology optimisation approach.
- Typically applied to binary compliance problems via a Solid Isotropic Material Penalisation approach.

Project Aim and Overview

- Three main approaches were taken to the project aim, with resulting designs compared to the fully modulus-matched 'control' design:
- 1. Developing a non-SIMP stiffness maximising topology optimisation with regional average volume fraction constraints
- 2. Developing a looped stress limiting process
- 3. Developing a non-SIMP stress constrained topology optimisation

Simulation Environment and Validation

• Implemented **meshing** of CAD model in MATLAB and application of **loading and fixing condition**.

 Created structure global stiffness and von mises stress matrices through finite element methods.

$$K(\rho) = \sum_{e=1}^{\infty} E_e \cdot K_e^0; \ [K_e^0] = \int B^T C^0 B \ dVol$$

$$\sigma_{e}^{VM} = \left(\sigma_{e_{x}}^{2} + \sigma_{e_{y}}^{2} + \sigma_{a_{z}}^{2} - \sigma_{e_{x}}\sigma_{e_{y}} - \sigma_{e_{y}}\sigma_{e_{z}} - \sigma_{e_{z}}\sigma_{e_{x}} + 3\sigma_{e_{xy}}^{2} + 3\sigma_{e_{yz}}^{2} + 3\sigma_{e_{xz}}^{2}\right)^{\frac{1}{2}}; \ \sigma^{e} = [C^{0}][B][u_{e}]E_{e} = \begin{bmatrix}\sigma_{e_{z}} & \sigma_{e_{z}} & \sigma_{e_$$

• Also implemented **adjoint method optimality criteria algorithm** for stiffness maximising topology optimisation.

 σ_{e_x}

 $\left[\begin{array}{c} \sigma_{e_{\chi z}} \\ \sigma_{e_{\chi z}} \end{array} \right]$

Simulation Environment and Validation

• Running SIMP stiffness maximising topology optimisation on a cantilever beam CAD model with appropriate loading and fixing condition **reproduced standard result**:

Developed non-SIMP stiffness maximising topology optimisation with regional average volume fraction targets

• Comparing simulation results for built-in stress of beam and end displacement to hand-calculated values showed similarity to an acceptable error:

	Hand Calc.	Value from	Error			
	Value	Script				
End $u, F_N = 5N$	0.135 m	0.152 m	12.6%			
Built in max σ_x , $F_N = 5N$	-1.13 MPa	-1.26 MPa	11.5%			
Built in max σ_x , $F_N = 90N$	-20.25 MPa	-22.66 MPa	11.9%			

Developed looped stress limited approach

Fully Modulus-Matched 'Control' Result

- Maximum stress: 22.2 MPa
- Percentage predicted element failures: 40.3%
- Overall average volume fraction: 0.08
- Percentage average deviation from modulus targets:

0%

Stress Limiting Process

- **Convergence criteria**: no yielding subject to 0.2 volume fraction not being exceeded (limit set by additive manufacture capability).
- Results varied with initial condition and iteration number.
- 4 designs obtained from this process, shown in following slides.

'Stress Limited' Result

'Stress Limited'

- Initial condition: 'Stiffness Top Op' design.
- Iteration no.: 'half' all yield stresses matched to von mises stresses regardless of whether element failure predicted*.

- Maximum stress: 78.6 MPa
- Percentage predicted element failures: 28.2%
- Overall average volume fraction: 0.079
- Percentage average deviation from modulus targets:

22.8%

Stress and failure distribution

• Maximum stress: 63.3 MPa

6

- Percentage predicted element failures: 12.0%
- Overall average volume fraction: 0.098
- Percentage average deviation from modulus targets:

95.0%

Discussion

- Consecutive designs reduced deflections at all indicated points (other than anterior) and improves the failure behaviour.
- Compromise upon bone remodelling behaviour doesn't increase in same order.
- Out of results obtained, 'Stress Limited Control' performed best, with a 22.2% predicted element failure (44.9% improvement upon 'Control') and a 12.0% modulus target deviation.

Stress Constrained Topology Optimisation

- A non-SIMP stress constrained topology optimisation which minimises the average volume fraction subject to stress constraints would be the most optimal solution.
- Optimisation required assembly of a global matrix of **P-norm stress** sensitivities with respect to each element's design variable for each cluster, which was derived analytically:

P-norm stress: Elements grouped into 'clusters', and P-norm stress measure then approximates the maximum von mises stress of the cluster.

Analytical P-norm Stress Sensitivity Verification

- Attempted to verify analytical solution by finding results for the first 5 elements of a 3-cluster cantilever beam and compare with finite difference approximations.
- If sensitivities could be verified, would be able to run stress-constrained topology optimisation (given sufficient computational resource).

				and the second sec	And and a second s
	w.r.t	w.r.t.	w.r.t	w.r.t	w.r.t
	element 1	element 2	element 3	element 4	element 5
Cluster 1	-8.4E+09	-8.9E+09	-1.3E+10	-1.4E+10	-1.6E+10
Cluster 2	-5.5E+07	-5.6E+07	-4.6E+07	-4.9E+07	-3.2E+07
Cluster 3	-7E+07	-7.5E+07	-5.5E+07	-1.1E+08	-3.8E+07

TABLE 1 - ANALYTICAL P-NORM SENSITIVITY VALUES

Table 2 – Finite difference P-norm sensitivity values with $\delta=0.01$

	w.r.t	w.r.t.	w.r.t	w.r.t	w.r.t
	element 1	element 2	element 3	element 4	element 5
Cluster 1	-1.10E+07	-1.10E+07	-6860722	-6860722	-2645628
Cluster 2	-277265	-277265	-202156	-202156	-237028
Cluster 3	-97015.3	-97015.3	-85985.2	-85985.2	-247305

Was not able to verify analytical solution – finite difference results all an order of 2-3 smaller.
Future work should further investigate the complex P-norm stress sensitivity derivation.

Conclusions

- The non-penalising stiffness-maximising topology optimisation approach improved yielding behaviour by 16.9% with a 14.3% deviation from modulus targets.
- The looped stress limiting approach offered further improvement in the yielding behaviour, with degree of compromise upon modulus targets being highly sensitive to initial condition and iteration number.
- *'Stress Limited Control'* design resulted from a single iteration upon a fully modulus-matched design and improved failure behaviour by 44.9% with only a 12.0% average deviation from modulus targets.

Future work:

- Further explore and assess designs that can be made from stress limiting looped process.
- Review P-norm stress sensitivity analytical solution to validate successfully.
- Lab testing on additive manufactured designs to validate performance.

